Abstract
The main result of this paper is the uniqueness of local arboreal models, defined as the closure of the class of smooth germs of Lagrangian submanifolds under the operation of taking iterated transverse Liouville cones. A parametric version implies that the space of germs of symplectomorphisms that preserve the local model is weakly homotopy equivalent to the space of automorphisms of the corresponding signed rooted tree. Hence the local symplectic topology around a canonical model reduces to combinatorics, even parametrically. This paper can be read independently, but it is part of a series of papers by the authors on the arborealization program.